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Forecasting lava flow hazards

« Along which paths, and to what distance from the
vent, will lava flow, and how long will it take to get
there?
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Predicting potential flow paths using a drainage model
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Favalli et al.. 2005

Lava flows downhill, but which way is downhill? A stochastic drainage model can be used
with a DEM (SRTM, ASTER GDEM) to simulate the most likely paths a lava flow will take
given a vent location



Predicting potential flow paths using a drainage model

But, this approach does not predict the likely length a lava flow will attain



Predicting potential flow lengths using a thermo-rheological model

Lava flows at a velocity
determined by rheology, effusion rate,
slope and channel dimensions

Lava temperature deceases down-flow
due to heat loss from the flow surface

(radiation, convection)

Temperature and rheology of
the lava vary down-flow

Harris and Rowland, 2001
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Lava temperature decreases down-flow
due to heat loss via conduction into
the underlying substrate

By modeling the stiffening of a control volume of lava flowing in a channel, the time (and hence
distance) from the vent that the lava becomes too stiff to flow any further can be predicted using
a numerical model



A thermo-rheological/stochastic approach for modeling lava flow hazards

Eruption intensity can change
rapidly, and reliable lava flow
hazard predictions rely on
timely and accurate information
regarding the nature and
intensity of the eruption and

how this varies
Lava flows at a velocity
determined by rheology, effusion rate,
slope and channel dimensions
\ Lava temperature deceases down-flow
due to heat loss from the flow surface
(radiation, convection) MUCh Of the I‘E|evant

information can be obtained
from remote sensing data, in a
manner not possible in the field

Temperature and meology\
the lava vary down-flow
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Lava temperature decreases down-flow
due to heat loss via conduction into
the underlying substrate



The importance of effusion rates

Effusion rates:
 Determine (largely) final flow length
 Vary during an eruption and between
eruptions byl-2 0.0.m.
« Are difficult to estimate in the field

=
w
o
=
(0]
-
[4v]
| —
S 120 20 40 6
.% Nyamuragira 18 Nyamuragira
:2 100 16 0 ) 5 m
L 14 G %0 &
< 8 2 s 4 Z
o 12 5 - =
[=] = N
2 60 108 2 20 3 8
- = 8 — T =
Wadge, 1981 Time & w0 '3 & -
o, 10 o,
20 4= 1~
2
Lo 0 0 0
1Feb 1 Mar 1 Ap 1 May 1 Feb 1 Mar 1 Apr 1 May
01 01 01 01 00 00 00 00
— Date Date
w 90 14 120 _ 20
o Etna Sierra Negra
18
= / 12 100
m 16 01
Q / N = 50 0g - 14 G
EE \\ oz 8 g “z 12 g
= - o = 60 102
o = g © X, 8 »
] y s” 30 E} g a0 3
tg 4 U} 6 (X
L / \ 2 ~ 20 4 =
‘\\_ 2
/ 1"‘*—-_____ ?Jul 1 Aug 1 Sgp 100c1 1 No 1 Dgc
— 01 01 o1 05 05 05
Date Date



Calculating lava effusion rates from infrared satellite data

The higher the volumetric flux of lava from the vent, the
greater the length (area) it can spread over before it
solidifies

Heat loss from flow surface

Lava effusion rate =
Enthalpy of the mass of lava
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Walker, 1973; Pieri and Baloga, 1986; Harris et al., 1997; Wright et al., 2001



Calculating lava flow cooling from HyspIRI's 4 um channel
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Surface heat loss along the length of an active lava channel

Mount Etna, Sicily




HyspIRI bridges the gap between high/low, spatial/temporal resolution sensors
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HyspIRI will give us MODIS-class temporal
resolution with Landsat-class spatial
resolution, allowing us to determine the
important effusion rate parameter by day
and night every five days




Driving numerical lava flow hazard models using satellite-derived effusion rates
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Driving numerical lava flow hazard models using satellite-derived effusion rates

December 15, 1991; Effusion rate = 3 m3 s
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December 25, 1991; Effusion rate = 15 m3 s’
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Percent of total radiating area

Parameterizing lava flow forecasting models using HyspIRI

Mount Etna, Sicily
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Wright, unpublished data

Lava flow surface temperature, and hence cooling rate, are important controls on how
quickly lava solidifies. At present, these are poorly constrained inputs to numerical flow
simulations. HyspIRI will allow us to fill this knowledge gap



Lava surface temperatures can be retrieved from an imaging spectrometer

Ly %E(L, T;)
=1

5 350
* 300
8 .
g® 250
s & g%
E‘T 20 8‘1 -
— e
8% S 150
[&] E E E
: [1}]
R a =100
wnZ &<
° 50
9 NI VIA
0 0.5 1.0 15 2.0 75 05

5%, Saturation

Wavelength (um)

Wavelength (um)

2.5

30m

M
v

160
140

—

=120

Spectral radiance
{W m—2 Sl'_1 m 1
(%] . for] 0 E;
oo o o o o

__Ml} ",

OD

0.5

1.0 1.5 2.0
Wavelength (um)

An imaging spectrometer always provides several tens of unsaturated spectral radiance
measurements, at all points on the lava flow surface, from which lava surface temperatures can

be determined
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Autonomous forecasting of lava flow hazards using HyspIRI

1. HyspIRI autonomously detects the onset 2. which allows us to compute the prevailing 3. which we can use to drive a forecast

of the eruption, pinpoints the vent location lava effusion rate........ of where the lava is likely to inundate.
and acquires an image........
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4. The next time HysplIRI passes over the target
another image is acquired........
5. which can be used to compute the 6. as well as calibrate and validate

new prevailing effusion rate........ the model predictions
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